Shedding light on sunscreen biosynthesis in zebrafish

نویسندگان

  • Carolyn A Brotherton
  • Emily P Balskus
چکیده

J ust as many people apply sunscreen before they go to the beach, bacteria, fungi and algae that spend much of their time in the sun also need to protect themselves from solar radiation. These organisms make small molecules that act as sunscreens by absorbing harmful ultraviolet (UV) radiation. Small-molecule sunscreens—which include compounds called the mycosporine-like amino acids (MAAs) and a related compound called gadusol—are also found in corals, marine invertebrates and fish. Sunscreen compounds like gadusol and the MAAs are important for the development, lifestyle and health of marine-dwelling organisms. For example, gadusol is found in high concentrations in the roes of fish, such as cod (Plack et al., 1981), as well as in sea urchin eggs (Chioccara et al., 1986), and it has been suggested that gadusol helps with embryonic development in these organisms. Sunscreen compounds also perform an array of roles in other organisms, including enhancing the UVlight vision of mantis shrimp (Bok et al., 2014). It was thought for many years that the ability to synthesize small-molecule sunscreens was limited to microbes, and that higher marine organisms obtained these compounds exclusively from their diet. Now, in eLife, Taifo Mahmud and co-workers at Oregon State University—including Andrew Osborn, Khaled Almabruk and Garrett Holzwarth as joint first authors—show that zebrafish can synthesize gadusol (Osborn et al., 2015). They also present evidence that the pathway used by zebrafish to make gadusol is distinct from the pathway used by microorganisms to synthesize MAAs. Moreover, they show that the gadusol biosynthetic genes are also found in the genomes of birds, reptiles and other organisms. In microorganisms that biosynthesize MAAs, the biosynthetic pathway involves three core enzymes and uses a compound called sedoheptulose-7phosphate as the starting material (Balskus and Walsh, 2010). The first step is performed by a dehydroquinate synthase-like enzyme. This enzyme is a member of a family of enzymes called the sugar phosphate cyclases, which catalyze the conversion of sugar molecules to products that contain a structure called a cyclohexane ring (Asamizu et al., 2012). Dehydroquinate synthase has a central role in the biosynthesis of aromatic amino acids, and is found in many branches of the tree of life—such as bacteria, archaea, fungi, plants and algae—but not in vertebrates. Given the lack of sugar phosphate cyclases in vertebrates, the Oregon State team was surprised to find a gene that encoded a related enzyme in the genomes of fish, including zebrafish (Danio rerio), a well-known model organism. This gene was similar to the EEVS (short for 2-epi5-epi-valiolone synthase) genes involved in the Copyright Brotherton and Balskus. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphodiesterase Inhibitors Sildenafil and Vardenafil Reduce Zebrafish Rod Photoreceptor Outer Segment Shedding

Purpose The vertebrate rod photoreceptor undergoes daily growth and shedding to renew the rod outer segment (ROS), a modified cilium that contains the phototransduction machinery. It has been demonstrated that ROS shedding is regulated by the light-dark cycle; however, we do not yet have a satisfactory understanding of the molecular mechanisms that underlie this regulation. Given that phototran...

متن کامل

Shedding new light on the origins of olfactory neurons

Sensory neurons in the nose of the zebrafish are derived from both neural crest cells and placode cells.

متن کامل

The response regulator Npun_F1278 is essential for scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

Following exposure to long-wavelength ultraviolet radiation (UVA), some cyanobacteria produce the indole-alkaloid sunscreen scytonemin. The genomic region associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme includes 18 cotranscribed genes. A two-component regulatory system (Npun_F1277/Npun_F1278) directly upstream from the biosynthetic genes was identified through c...

متن کامل

Sunscreen for Fish: Co-Option of UV Light Protection for Camouflage

Many animals change their body pigmentation according to illumination of their environment. In aquatic vertebrates, this reaction is mediated through aggregation or dispersion of melanin-filled vesicles (melanosomes) in dermal pigment cells (melanophores). The adaptive value of this behavior is usually seen in camouflage by allowing the animal to visually blend into the background. When exposed...

متن کامل

Gene expression patterns associated with the biosynthesis of the sunscreen scytonemin in Nostoc punctiforme ATCC 29133 in response to UVA radiation.

Under exposure to UV radiation, some cyanobacteria synthesize sunscreen compounds. Scytonemin is a heterocyclic indole-alkaloid sunscreen, the synthesis of which is induced upon exposure to UVA (long-wavelength UV) radiation. We previously identified and characterized an 18-gene cluster associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133; we now report on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015